Guida ai polioli in chetogenica: analisi delle loro Implicazioni su Glicemia e Insulina

Nell'ambito di una dieta chetogenica, la gestione accurata dell'apporto di carboidrati è di fondamentale importanza. Quando si parla di polioli, una categoria di carboidrati parzialmente disponibili, è cruciale esaminare le peculiarità di ciascuno di questi zuccheri alcolici al fine di valutarne l'impatto sulla glicemia, sull'insulina e di calcolare in maniera precisa l'apporto calorico.
Cos'è un Poliolo?
I polioli costituiscono una sottoclasse di carboidrati noti anche come "alcoli polivalenti" o "carboidrati idrogenati," comunemente indicati come "alcoli zuccherini." La loro caratteristica distintiva risiede nella presenza di un gruppo alcolico (>CH-OH) al posto del gruppo carbonilico (>C=O) nelle porzioni aldose e chetose di mono-, di-, oligo- e polisaccaridi. In termini di nomenclatura, i polioli si distinguono dai comuni zuccheri per l'aggiunta del suffisso "-itolo" al posto del tradizionale "-oso," seguendo la moderna classificazione dei carboidrati di McNaught.
Differenza tra polioli e zuccheri
Gli zuccheri sono legalmente definiti solo ai fini dell'etichettatura nutrizionale come mono e disaccaridi. Al contrario, i polioli possono essere mono-, di- idrogenati, ma anche oligo- e polisaccaridi.
I polioli non sono cariogeni, hanno un basso indice glicemico e insulinemico e un basso consumo energetico e queste caratteristiche sono legate alla proprietà comune dei polioli di essere difficili da digerire o lenti da metabolizzare ma relativamente facili alla fermentazione nel colon.
Qual è l’Indice Glicemico e e l’indice insulinemico dei Polioli?
Un aspetto di notevole interesse riguardo ai polioli è l'Indice Glicemico (IG) e l'indice insulinemico (II), entrambi con implicazioni significative per la salute. Una rassegna della letteratura scientifica ha fornito i seguenti valori per la glicemia e l'insulinemia in seguito all'assunzione di polioli:
POLIOLI |
I.G. |
I.I. |
Eritritolo |
0 |
2 |
Xylitolo |
13 |
11 |
Sorbitolo |
9 |
11 |
Mannitolo |
0 |
0 |
Isomalto |
9 |
6 |
Lattitolo |
6 |
4 |
Maltitolo |
35 |
27 |
Regular maltitol syrup |
52 |
44 |
Intermediate maltitol syrup |
53 |
41 |
High maltitol syrup |
48 |
35 |
Sciroppo di maltitolo (High Polymer maltitol syrup) |
36 |
31 |
Poliglicitolo |
39 |
23 |
Tutti questi valori risultano notevolmente inferiori rispetto al saccarosio (IG 65) e al glucosio (assunto come punto di riferimento con un IG di 100).
Queste caratteristiche dei polioli derivano dalla loro difficoltà di digestione e assorbimento a causa del gruppo alcolico che sostituisce il gruppo carbonilico, oltre alla presenza di legami saccaridici diversi da α1–4 e α1–6 che si trovano negli amidi e nel saccarosio. Di conseguenza, la limitata digeribilità e/o il lento rilascio epatico di glucosio rappresentano i determinanti principali delle loro proprietà a bassa risposta glicemica e insulinemica.
Come vengono digeriti i polioli
Nel processo di digestione dei polioli, si evidenziano varie fasi chiave che influenzano il loro impatto metabolico e la loro assorbibilità.
Resistenza alla Fermentazione Orale e Stomacale
All'interno della bocca, i polioli dimostrano una notevole resistenza alla fermentazione e all'acidogenesi, evitando così il potenziale danno causato dai microrganismi presenti nella placca dentale. Inoltre, a livello gastrico, la loro assorbibilità è limitata poiché non vengono significativamente assorbiti attraverso lo stomaco.
Assorbimento attraverso il Tratto Gastrointestinale
L'assorbimento dei polioli avviene principalmente per diffusione passiva di polioli monosaccaridici lungo un gradiente di concentrazione. Tuttavia, è importante notare che i disaccaridi e i polioli di dimensioni superiori sono troppo grandi per essere assorbiti in quantità superiori al 2% dell'assunzione orale. Questa limitata capacità di assorbimento deriva dalla loro struttura molecolare.
Minore Impatto sulla Glicemia
Sebbene alcuni polioli di dimensioni maggiori possano rilasciare piccole quantità di glucosio, la loro digestione è caratterizzata da lentezza e incompletezza. Di conseguenza, questo processo non determina un aumento significativo dei livelli di glicemia. Questo aspetto è particolarmente rilevante per le persone che cercano di gestire il controllo glicemico.
Metabolismo ed Escrezione
Una volta assorbiti, i polioli monosaccaridici vengono sottoposti a varie vie metaboliche. Possono essere escreti attraverso i reni, ossidati direttamente oppure convertiti in glicogeno o glucosio nel fegato, a seconda della loro struttura chimica specifica. La scelta della via metabolica e di escrezione dipende dalla composizione molecolare dei polioli.
Fermentazione nel Colon
I carboidrati non assorbiti dai polioli, in particolare quelli di dimensioni maggiori, vengono generalmente sottoposti a una fermentazione completa da parte della microflora intestinale del colon.
I SINGOLI POLIOLI: APPROFONDIMENTO
Per una comprensione approfondita dei singoli polioli e del loro ruolo nelle diete chetogeniche, è essenziale distinguere tra i carboidrati assorbiti e quelli che contribuiscono alla fermentazione intestinale. Questa distinzione è fondamentale perché solo una percentuale dei polioli viene effettivamente assorbita, mentre il restante contribuisce alla fermentazione. Per calcolare le calorie derivanti dai polioli quando non è possibile utilizzare la calorimetria indiretta, è possibile applicare la seguente formula:
Kcal polioli=calorie di combustione x (carboidrati disponibili + 0.5 x carboidrati fermentabili)
Eritritolo
L'eritritolo è una piccola molecola (tetritolo a quattro atomi di carbonio) che viene assorbita in misura considerevole, approssimativamente al 90%, attraverso il processo di diffusione. Il restante 10% raggiunge l'intestino crasso nell'organismo umano. L'eritritolo assorbito si distribuisce ampiamente nei tessuti ma viene scarsamente metabolizzato, principalmente escreto nelle urine. Questa caratteristica lo rende il poliolo più tollerato a livello intestinale con un impatto minore sui livelli glicemici. L'eritritolo è conosciuto per la sua forma di microgranuli cristallizzati di colore bianco e il suo piacevole retrogusto fresco. Ha un indice glicemico pari a zero e un indice insulinemico stimato di 2. Sviluppa solo 0,2 Kcal per grammo, ma il decreto 1169/11 relativo all'etichettatura nutrizionale consente di dichiarare valori nulli.
La conversione in carboidrati è irrilevante.
L'eritritolo rimane ad oggi la migliore scelta tra tutti i polioli, visto l'impatto nullo su glicemia, insulina e microbiota intestinale.
Xilitolo
Identificato con la sigla E967, lo xylitolo è un poliolo estratto da betulle, da frutti come le fragole, i lamponi o le prugne ma a volte anche dal grano. Si presenta in forma cristallina di colore bianco ed ha un sapore molto simile al saccarosio.
L'assorbimento dello xilitolo dall'intestino tenue avviene meno facilmente rispetto alla molecola più piccola eritritolo, provocando una maggiore fermentazione nell'intestino crasso. Le stime dell'entità della fermentazione si aggirano attorno al 50 % mentre sulla base dei valori energetici proposto da diversi esperti, si stabilisce un assorbimento del 50 % con escrezioni urinarie inferiori al 2%, per cui si stima un apporto di carboidrati disponibili attorno al 48%
Il fegato sequestra prontamente lo xilitolo assorbito dove viene deidrogenato da una deidrogenasi citoplasmatica dipendente dalla NAD. Lo xilulosio così prodotto viene fosforilato tramite una xilulochinasi specifica a xilulosio-5-fosfato, un intermedio della via del pentoso-fosfato prima della conversione in glucosio, che viene rilasciato solo lentamente nel flusso sanguigno o immagazzinato come glicogeno.
L’indice glicemico e insulinemico dello xylitolo è pari a 13 e 11 rispettivamente.
Le Calorie stimate attraverso la formula citata sono pari a 3Kcal/gr. Se calcolate per calorimetria indiretta lo xyilitolo è invece stimato a 2Kcal/gr.
Sorbitolo
Detto anche glucitolo, è un alditolo estratto generalmente da frutti, come pere, mele, bacche, ciliegie e dalle sorbe, da cui prende il nome. Come l’eritritolo, il sorbitolo rilascia una sensazione di freschezza quando ingerito e si presenta come una polvere bianca facilmente solubile. Viene identificato anche dalla sigla E420.
Le stime dell'assorbimento da soluzioni orali si aggirano al 25% della dose ingerita. Il sorbitolo assorbito viene metabolizzato quasi completamente poiché vengono escrete solo alcune tracce, per cui si stima una conversione in carboidrati del 25%. La deidrogenazione nel fegato avviene tramite la deidrogenasi citoplasmatica dipendente dalla NAD, come per lo xilitolo, con la produzione di fruttosio, quindi glicogeno o glucosio che possono essere lentamente rilasciati nel flusso sanguigno. Il sorbitolo non assorbito è ampiamente fermentato in acidi grassi a catena corta e gas a catena corta, con una notevole resa di acido butirrico in vitro.
L’indice glicemico del sorbitolo è pari a 9, mentre l’indice insulinemico è stimato a 11. Le Calorie stimate sono pari a 2,5 Kcal/gr.
Mannitolo
Il mannitolo è un alditolo il cui nome presente in molti vegetali, come conifere, funghi o alghe. Detto anche mannite, viene estratto dalla manna, ovvero dalla linfa del frassino e si presenta generalmente in polvere di colore bianco e a volte viene indicato in etichettatura con la sigla E421.
Diversi studi indicano che il mannitolo viene assorbito approssimativamente al 25% per poi venire escreto nelle urine nella stessa quantità perché è virtualmente non metabolizzabile nei tessuti. Il mannitolo residuo viene fermentato lentamente. L’indice glicemico ed insulinemico del mannitolo è pari a zero.
Le Calorie sviluppate sono 1,5 Kcal/gr. L’etichettatura USA impone di dichiarare 1,6 Kcal per grammo, mentre in EU tutti i polioli (tranne l’eritritolo) vengono dichiarati a 2,4Kcal/gr.
Isomalto
L’isomalto è un poliolo disaccaridico misto (alditolo) ricavato dalle barbabietole attraverso un processo chimico e si presenta come una sostanza cristallina, bianca e inodore. La sua sigla è E953.
I prodotti dell'idrolisi sono il glucosio, il sorbitolo e il mannitolo. Sulla base dei valori energetici dell'isomalto suggeriti da varie autorità ed esperti si ritiene che circa il 90% venga fermentato nel colon, con una stechiometria in vivo e in vitro che indica relativamente poca produzione di gas H2. Quindi solo un 10% viene assorbito, con escrezioni urinarie inferiori al 2%, per cui si stima una disponibilità di carboidrati pari all’8%.
Anche l’indice glicemico e insulinemico sono estrememente bassi: 9 e 6 rispettivamente. Le Calorie sviluppate sono pari a 2,2/gr, che si avvicinano estremamente alle 2Kcal calcolate con calorimetria indiretta.
Anche secondo l’etichettatura USA le Kcal sono 2 per ogni grammo.
Lattitolo
Il lattitolo (la cui sigla è E966) è un poliolo che si ottiene per idrogenazione del lattosio. La sua formula chimica è C12H24O11 e si presenta in forma di polvere cristallina.
Questo poliolo disaccaride viene assorbito pochissimo, forse il 2% come lattitolo e suoi prodotti di idrolisi, galattosio e sorbitolo. Ciò è dovuto a un'attività molto bassa della beta-galattosidasi nell'intestino umano. Il fegato utilizza prontamente il galattosio e il sorbitolo assorbiti sia nell'accumulo di glicogeno epatico che nella produzione di glucosio epatico. Il lattitolo non assorbito viene completamente fermentato con una stechiometria che fornisce una generosa resa di gas H2 in vivo e in vitro e acido butirrico in vitro.
Le Kcal stimate dalla formula matematica sono 1,9 per ogni grammo mentre per calorimetria indiretta sono pari a 2Kcal/gr. L’indice glicemico (pari a 6) e insulinemico (pari a 4) sono estremamente bassi e giustificati dalla bassissima conversione in carboidrati.
Maltitolo
Si tratta di un poliolo disaccaride, identificato con la sigla E965, per il quale è necessaria l'idrolisi prima dell'assorbimento. I prodotti dell'idrolisi sono il glucosio e il sorbitolo.
Per stabilire la percentuale di assorbimento è necessario tenere conto di tre approcci di studio non invasivi su soggetti umani.
- Un primo approccio indica un limite inferiore di assorbimento del 35 % per il maltitolo (10 g) in soluzione.
- In secondo luogo, la glicemia e l'insulinemia indicano un limite inferiore all'assorbimento rispettivamente dal 35 al 27 % di formaltitolo (25–50 g) in soluzione.
- Terzo, sulla base della calorimetria indiretta in seguito all'ingestione di uno sciroppo di maltitolo ad alto polimero contenente il 50% di maltitolo e il 50% di polimero e uno studio separato della frazione polimerica è possibile stimare il valore energetico del maltitolo, che corrisponde a un assorbimento del maltitolo di circa il 32 % se consumato in tre pasti solidi misti intervallati da tre bevande al maltitolo (per un totale di 50 g di maltitolo in 50 g di polimero al giorno).
Sulla base dei valori energetici per il maltitolo proposti da diverse autorità, l'assorbimento è del 40%, con un’escrezione urinaria inferiore al 2% per cui si stima una conversione in carboidrati del 38-40% circa; l’indice glicemico del maltitolo (= a 35) è conforme alla sua conversione in CHO, mentre quello insulinemico è di 27. Le Kcal da formula e da calorimetria indiretta sono abbastanza simili: 2,7 e 2,6 rispettivamente, mentre la legislazione USA impone di calcolare 2,1Kcal/gr, a differenza dell’EU che vede tutti i polioli (con l’eccezione dell’eritritolo) calcolati a 2,4 Kcal/gr.
Sciroppo di maltitolo
Si tratta di un idrolizzato di amido idrogenato ed è costituito da una miscela di sorbitolo, maltitolo e oligo- e polisaccaridi idrogenati e si presenta come un liquido viscoso incolore. Sebbene sia identificato con la stessa sigla del maltitolo (E965) in realtà non solo possiede caratteristiche differenti, ma lo “sciroppo di maltitolo” identifica quattro prodotti nettamente diversi:
- sciroppo di maltitolo normale
- sciroppo di maltitolo intermedio
- sciroppo di maltitolo superiore
- sciroppo di maltitolo ad alto polimero
La disponibilità dei carboidrati delle prime 3 tipologie è vicina al 50%, con un’escrezione urinaria del 2% circa, mentre il restante 50% viene fermentato, generando 3Kcal/gr (le stesse Kcal indicate dalla legislazione USA). L’indice glicemico di 1) 2) e 3) è rispettivamente pari a 52, 53 e 48.
L’ultimo tipo è stato introdotto recentemente: si tratta di uno sciroppo di maltitolo comprendente il 50 % di maltitolo e il 50 % di polimero idrogenato. La frazione ad alto polimero si ottiene riscaldando l'amido ad alta temperatura e bassa umidità in presenza di un catalizzatore acido, che cede dopo separazione un prodotto con un grado medio di polimerizzazione di circa 17, l'introduzione di 1–2 e 1–3 legami glucosidici e quindi una proporzione di legami ramificati. Sulla base dei dati di risposta glicemica e insulinemica, la disponibilità dei carboidrati dello sciroppo di maltitolo alto polimero è di circa il 40 % in base all'idrolisi con α-amilasi e amiloglucosidasi e al rilascio di sorbitolo e glucosio. Questo valore è coerente con la glicemia e l'insulinemia descritte nella presente rassegna.
Sciroppo di poliglicitolo
Simile agli sciroppi di maltitolo, lo sciroppo di poliglicitolo è un idrolizzato di amido idrogenato, sebbene contenga più sorbitolo (< 20 v. < 8 %) e meno maltitolo (< 50 v. ≥ 50 %). L'assorbimento dei carboidrati dallo sciroppo di poliglicitolo è di entità incerta. Tuttavia, con un IG e un indice insulinemico simili a quelli del maltitolo in polvere (39 e 23 rispettivamente) ha probabilmente una digeribilità intorno al 40%. Viene indicato con la sigla E964.
Le Kcal stimate dalla formula sono pari a 2,8, cifra molto vicina a quella stabilita dalla legislazione USA, ovvero 3Kcal/gr. In EU viene sempre stimata a 2,4 Kcal/gr.
Scelta Consapevole dei Polioli in una Dieta Chetogenica
Dopo aver esaminato attentamente le varie tipologie di polioli e compreso il loro impatto sulla dieta chetogenica, emerge chiaramente che l'eritritolo si distingue come la scelta migliore, e potremmo affermare, l'opzione più adatta in questo contesto alimentare.
L'eritritolo, con la sua elevata percentuale di assorbimento (circa il 90%) attraverso il processo di diffusione, si presenta come il poliolo più tollerato dal nostro sistema intestinale. La sua scarsa influenza sui livelli glicemici lo rende particolarmente adatto per coloro che seguono una dieta chetogenica, in cui il controllo rigoroso dell'apporto di carboidrati è fondamentale.
Inoltre, l'eritritolo si caratterizza per il suo irrilevante contenuto calorico, rendendo l'eritritolo un valido alleato nella gestione delle calorie totali durante una dieta chetogenica.
È cruciale sottolineare che, a differenza degli altri polioli che possono presentare un'assorbimento variabile, una fermentazione intestinale più accentuata, un considerevole apporto calorico e una conversione in carboidrati assimilabili, l'eritritolo è notevolmente distintivo per le sue caratteristiche ideali in una dieta chetogenica.
Bibliografia
Abraham, RR, Davis, M, Yudkin, J & Williams, R (1981) Controlled clinical trial of a new non-calorigenic sweetening agent. Journal of Human Nutrition 35, 165–172.Google ScholarPubMed Adcock, LH, Grey, CH (1957) The metabolism of sorbitol in the human subject. Biochemical Journal 65, 554–560.CrossRefGoogle Scholar Akgün, S & Ertel, NH (1980) A comparison of carbohydrate metabolism after sucrose, sorbitol and fructose meals in normal and diabetic subjects. Diabetes Care 3, 582–585.CrossRefGoogle ScholarPubMed Alanen, P (2001) Does chewing explain the caries-preventative results with xylitol. Journal of Dental Research 80, 1600–1601.CrossRefGoogle ScholarPubMed Alberti, KG & Zimmet, PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetes Medicine 15, 539–553.3.0.CO;2-S>CrossRefGoogle ScholarPubMed Altman, DG (1991) Practical Statistics for Medical Research. London: Chapman and Hall.Google Scholar American Association of Cereal Chemists (2001) The Definition of Dietary Fiber, Report of the Dietary Fiber Definition Committee. St Paul MN: American Association of Cereal Chemists.Google Scholar American Diabetes Association (2001) Postprandial blood glucose (a consensus statement). Diabetes Care 24, 775–778.CrossRefGoogle Scholar American Diabetes Association (2002) Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care 25 S50–S60CrossRefGoogle Scholar Anti, M, Pignataro, G, Armuzzi, A, Valenti, A, Iascone, E, Marmo, R, Lamazza, A, Pretaroli, AR, Pace, V, Leo, P, Castelli, A & Gasbarrini, G (1998) Water supplementation enhances the effect of high-fibre diet on stool frequency and laxative consumption in adult patients with functional constipation. Hepatogastroenterology 45, 727–732.Google Scholar Australia New Zealand Food Authority (2001) Inquiry Report: Derivation of Energy Factors. Canberra Australia: ANZFAGoogle Scholar Bachmann, W, Haslbeck, M, Spengler, M, Schmitz, H & Mehnert, H (1984) Untersuchungen zur Stoffwechselbeeinflussung durch akute Palatinitgaben. Vergleich zu Fructose und Saccharose bei Typ-II-Diabetes (Investigations of the metabolic effects of acute doses of Palatinit. Comparison with fructose and sucrose in Type II diabetes). Aktulle Ernährungsmedizin 9, 65–70.Google Scholar Baker, SS, Liptak, GS, Colletti, RB, Croffie, JM, Di Lorenzo, C, Ector, W & Nurko, S (1999) Constipation in infants and children: evaluation and treatment. A medical position statement of the North American Society for Pediatric Gastroenterology and Nutrition. Journal of Pediatric Gastroenterology and Nutrition 29, 612–626.CrossRefGoogle ScholarPubMed Bakr, AA (1997) Application potential for some sugar substitutes in some low energy and diabetic foods. Nahrung-Food 41, s170–s175CrossRefGoogle ScholarPubMed Ballongue, J, Schumann, C & Quignon, P (1997) Effect of lactulose and lactitol on colonic microflora and enzymatic activity. Scandinavian Journal of Gastroenterology 32, Suppl. 222, 41–44.CrossRefGoogle Scholar Bär, A (1990) Factorial calculation model for the estimation of the physiological caloric value of polyols. In Caloric Evaluation of Carbohydrates, 209–257. [Hosoya, N editor]. Tokyo: Research Foundation for Sugar Metabolism.Google Scholar Bär, A (2000) Foods Intended for Use in a Carbohydrate Controlled Diet Position paper for German Diätvertband. Basel Switzerland; Bioresco.Google Scholar Barlow, S (2001) Workshop: regulatory affairs. British Journal of Nutrition 85, Suppl. 1, S63–S64.CrossRefGoogle ScholarPubMed Bastyr, EJ, Stuart, CA, Brodows, RG, Schwartz, S, Graf, CJ, Zagar, A & Robertson, KE (2000) Therapy focussed on lowering post-prandial glucose, not fasting glucose, may be superior for lowering HBA 1c. Diabetes Care 23, 1236–1241.CrossRefGoogle Scholar Beaugerie, LFourié, BMarteau, PPellier, PFranchisseur, CRambaud, J-C (1990) Digestion and absorption in the human intestine of three sugar alcohols. Gastroenterology 99 717–723.CrossRefGoogle ScholarPubMed Bellisle, F (2001) Glycaemic Index and Health: the Quality of the Evidence. Montrouge, France: John Libbey Eurotext.Google Scholar Benton, JM, O'Hara, PA, Chen, H, Harper, DW & Johnston, SF (1997) Changing bowel hygiene practice successfully: a program to reduce laxative use in a chronic care hospital. Geriatric Nurse 18, 12–17.CrossRefGoogle Scholar Bernier, JJ & Pascal, G (1990) The energy value of polyols (sugar alcohols). Medicine et Nutrition 26, 221–238.Google Scholar Bernt, WO, Borzelleca, JF, Lamm, G &Munro, IC (1996) Erythritol: a review of biological and toxicological studies. Regulatory Toxicology and Pharmacology 24, s191–s197CrossRefGoogle ScholarPubMed Biasco, G & Paganelli, GM (1999) European trials on dietary supplementation for cancer prevention. Annals of the New York Academy of Sciences 889 152–156.CrossRefGoogle ScholarPubMed Bibby, B (1975) The cariogenicity of snack foods and confections. Journal of the American Dental Association 90, 121–132.CrossRefGoogle ScholarPubMed Bird, AR, Brown, IL & Topping, DL (2000) Starches, resistant starches, the gut microflora and human health. Current Issues in Intestinal Microbiology 1, 25–37.Google ScholarPubMed Birkhed, D & Bär, A (1991) Sorbitol and dental caries. World Review of Nutrition and Dietetics 65, 1–37.CrossRefGoogle ScholarPubMed Björck, I, Liljeberg, H & Östman, E (2000) Low-glycaemic index foods. British Journal of Nutrition 83, suppl. 1, S149–S155CrossRefGoogle ScholarPubMed Black, A & Rayner, M, for the Coronary Prevention Group (1992) Just read the label: understanding nutrition information in numeric, verbal and graphic format. London: H.M. Stationery Office.Google Scholar Blanc, P, Daures, JP, Rouillon, JM, Peray, P, Pierrugues, R, Larrey, D, Gremy, F & Michel, H (1992) Lactitol or lactulose in the treatment of chronic hepatic encephalopathy: results of a meta-analysis. Hepatology (Baltimore) 15, 222–228.CrossRefGoogle ScholarPubMed Bornet, FRJ, Blayo, A, Dauchy, F & Slama, G (1996a) Plasma and urine kinetics of erythritol after oral ingestion by healthy humans. Regulatory Toxicology and Pharmacology 24, s220–s285CrossRefGoogle ScholarPubMed Bornet, FRJBlayo, ADauchy, FSlama, G (1996b) Gastrointestinal response and plasma and urine determinations in human subjects given erythritol. Regulatory Toxicology and Pharmacology 24, s296–s302CrossRefGoogle ScholarPubMed Bornet, FRJ, Costagliola, D, Rizkalla, SW, Blayo, A, Fontvieille, AM, Haardt, MJ, Letanoux, M, Tchobroutsky, G & Slama, G (1987) Insulinemic and glycemic indices of six starch-rich foods taken alone and in a mixed meal by type 2 diabetics. American Journal of Clinical Nutrition 45, 588–595.CrossRefGoogle Scholar Bramstedt, F, Gehring, F & Karle, EJ (1976) Comparative Study of the Cariogenic Effects of Palatinit, Xylitol and Saccharose in Animals. Würzburg Germany: University of Würzburg.Google Scholar Brand, J, Colagiuri, S, Crossman, S, Allen, A, Roberts, D & Truswell, S (1991) Low-glycemic index foods improve long-term glycaemic control in NIDDM. Diabetes Care 14, 95–101.CrossRefGoogle Scholar Brand-Miller, J, Wolever, TMS, Colagiuri, S & Foster-Powell, K (1999) The Glucose Revolution New York: Marlow Company.Google Scholar Briet, F, Achour, L, Fourié, B, Beaugerie, L, Pellier, P, Franchisseur, C, Bornet, F & Rambaud, JC (1995) Symptomatic response to varying levels of fructooligosaccharides consumed occasionally or regularly. European Journal of Clinical Nutrition 49, 501–507.Google ScholarPubMed Briet, F, Pochart, P, Marteau, P, Flourie, B, Arrigoni, E & Rambaud, JC (1997) Improved clinical tolerance to chronic lactose ingestion in subjects with lactose intolerance: a placebo effect? Gut 41, 632–635.CrossRefGoogle ScholarPubMed Brin, M & Miller, OM (1974) The safety of oral xylitol. In Sugars in Nutrition, pp. 591–606[Sipple, HL and McNutt, KW editors]. New York: Academic Press.Google Scholar British Nutrition Foundation (2000) Oral Health, Diet and Other Factors. The Report of the British Nutrition Foundation's Task Force. Amsterdam: Elsevier.Google Scholar Brooks, SPJ (1995) Report on the Energy Value of Sugar Alcohols Ottawa Canada: Ministry of Health.Google Scholar Brouns, F, Kettlitz, B & Arrigoni, E (2002) Resistant starch and the ‘butyrate revolution’. Trends in Food Science and Technology 13, 251–261.CrossRefGoogle Scholar Brown, R, Gibson, JA, Sladen, GE, Hicks, B & Dawson, AM (1974) Effects of lactulose and other laxatives on ileal and colonic pH as measured by radiotelemetry device. Gut 15, 999–1004.Google Scholar Burt, A & Ismail, AI (1986) Diet, nutrition, and food cariogenicity. Journal of Dental Research 65, 1475–1484.Google Scholar Buyken, AE, Toeller, M, Heitkamp, G, Irsiglert, C, Hollert, F, Santeusanio, F, Stehle, P, Fuller, JH, and the EURODIAB IDDM Complication Study Group (2000) Carbohydrate sources and glycaemic control in type 1 diabetes mellitus. Diabetic Medicine 17, 351–359.CrossRefGoogle ScholarPubMed Buyken, AE, Toeller, M, Heitkamp, G, Karamanos, B, Rottiers, R, Muggeo, M, Fuller, JH and the EURODIAB IDDM Complications Study Group (2001) Glycaemic index of the diet of European outpatients with type-1 diabetes: relations to glycated hemoglobin and serum lipids. American Journal of Clinical Nutrition 73, 574–581.CrossRefGoogle ScholarPubMed Canadian Diabetes Association (2000) Guidelines for the management of diabetes mellitus in the new millennium. Canadian Journal of Diabetes Care 23, 56–69.Google Scholar Cherbut, C, Ferrier, L, Roze, C, Anini, Y, Blottiere, H, Lecannu, G & Galmiche, JP (1998) Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. American Journal of Physiology 275, G1415–G1422.Google ScholarPubMed Ciardi, J. Bowen, WH. Rolla, G & Nagorski, K (1983) Effects of sugar substitutes on bacterial growth, acid production and glucan synthesis. Journal of Dental Research 62, 182Google Scholar Clausen, MR, Jørgensen, J & Mortensen, PB (1998) Comparison of diarrhea induced by ingestion of the fructo-oligosaccharide idolax and the disaccharide lactulose. Digestive Diseases and Sciences 43, 2696–2707.CrossRefGoogle Scholar Codex Alimentarius Commission (1991) Codex Standard for Formula Foods for Use in Weight Control Diets. Codex Standard 181. Rome: Food and Agricultural Organization.Google Scholar Collier, GR, Greenberg, GR, Wolever, TMS & Jenkins, DJA (1988) The acute effect of fat on insulin secretion. Journal of Clinical Endocrinology and Metabolism 66, 323–326.CrossRefGoogle ScholarPubMed Collier, GR, Wolever, TMS, Wong, GS & Josse, RG (1986) Prediction of glycaemic responses to mixed meals in non-insulin dependent diabetic subjects. American Journal of Clinical Nutrition 44, 349–352.CrossRefGoogle Scholar Cornick, DER & Bowen, WH (1972) The effect of sorbitol on the dental plaque in monkeys (Macacac Irus). Archives of Oral Biology 17, 1637–1648.CrossRefGoogle Scholar Delas, N, Gislon, J, Glikmanas, M, Henri-Biabaud, E, Lemerez, M, Licht, H, Slama, JL & Gillaume, PN (1991) Lactitol in the treatment of constipation in the adult. Open, non-comparative study of its efficacy and its clinical and biological tolerance. Annals of Gastroenterology and Hepatology (Paris) 27, 231–233.Google Scholar Diabetes UK (2000) Diet in diabetes care. www.diabetes.org.uk/summer 00/diet.htmGoogle Scholar Diabetes UK (2002) Nutritional guidelines in diabetes care. www.diabetes.org.uk/infocentre/carerec/nutrition.htmGoogle Scholar Dills, WL (1989) Sugar alcohols as bulk sweeteners. Annual Review of Nutrition 9, 161–186.CrossRefGoogle ScholarPubMed Dodds, MW, Hsieh, SC & Johnson, DA (1991) The effect of increased mastication by daily gum-chewing on salivary gland output and dental plaque acidogenicity. Journal of Dental Research 70, 1474–1478.CrossRefGoogle ScholarPubMed Doorenbos, H (1977) Metabolism of Lactitol Arkelsedijk, The Netherlands: PURAC Biochem BV, GorinchemGoogle Scholar Drost, H, Gierlich, P, Spengler, M & Jahnke, K (1980) Blutglucose and Seruminsulin nach oraler Applikation von Palatinit im Vergleich zu Glucose bei Diabetikern vom Erwachsenentyp (Blood glucose and serum insulin after oral administration of Palatinit in comparison with glucose in diabetics of the late-onset type). Verhandlungen der Deutschen Gesellschaft für innere Medizin 86, 978–981.Google Scholar Drost, H, Spengler, M, Kleophas, W & Schmitz, HJahnke, K (1985) Comparative study of the effect of a standardised breakfast containing sorbitol, fructose or sucrose in type-II diabetes mellitus. Aktulle Ernährungsmedizin 10, 195–198.Google Scholar Dutch Nutrition Council (1987) The Energy Values of Polyols. Recommendations of the Committee on Polyols. The Hague: Nutrition Council.Google Scholar Ellis, FW & Krantz, JC (1941) Sugar alcohols XXII. Metabolism and toxicity studies with mannitol and sorbitol in man and animals. Journal of Biological Chemistry 141, 147–151.Google Scholar Ellis, FW & Krantz, JC (1943) Sugar alcohols XXIV. The metabolism of sorbitol in diabetes. Annals of Internal Medicine 18, 792–796.Google Scholar European Association for the Study of Diabetes (1995) Recommendations for healthcare professionals in the nutritional management of patients with diabetes. Diabetes, Nutrition and Metabolism 8, 186–189.Google Scholar European Association for the Study of Diabetes (2000) Recommendations for the nutritional management of patients with diabetes mellitus. European Journal of Clinical Nutrition 54, 353–355.CrossRefGoogle Scholar European|Communities (1990) Directive 90/496/EC: nutrition labelling for foodstuffs. Official Journal of the European Communities L276, 40–44.Google Scholar European Communities (1994) Directive 94/35/EC: sweeteners for use in foodstuffs. Official Journal of the European Communities L237, 2–12.Google Scholar European Diabetes Policy Group (1999 a) A desktop guide to type-1 (insulin dependent) diabetes mellitus. Diabetes Medicine 16, 253–266.CrossRefGoogle Scholar European Diabetes Policy Group (1999 b) A desktop guide to type-2 diabetes mellitus. Diabetes Medicine 16 716–730.CrossRefGoogle Scholar Featherstone JDB (1995) Effect of isomalt sweetener on the caries process: a review. Journal of Clinical Dentistry 5 82–85.Google Scholar Featherstone|JDB (2000) The science and practice of caries prevention. Journal of the American Dental Association 131 887–899.CrossRefGoogle Scholar Felber, JP, Tappy, L, Vouillamoz, D, Radin, JP & Jéquier, E (1987) Comparative study of maltitol and sucrose by means of continuous indirect calorimetry. Journal of Enteral and Parenteral Nutrition 11, 250–254.CrossRefGoogle ScholarPubMed Felix, YF, Hudson, MJ, Owen, RW, Ratcliffe, B, van Es, AJH, nan Velthuijsen, JA & Hill, MJ (1990) Effect of dietary lactitol on the composition and metabolic activity of the intestinal microflora in the pig and in humans. Microbial Ecology Health and Disease 3, 259–267.CrossRefGoogle Scholar Food and Agriculture Organization (1996–1999) Food and Nutrition Paper no. 52 addenda, 4-7. Rome: Food and Agriculture OrganizationGoogle Scholar Food and Agriculture Organization (1998) Carbohydrates in Human Nutrition. Food and Nutrition Paper no. 66. Rome: Food and Agriculture OrganizationGoogle Scholar Ford, ES & Liu, S (2001) Glycemic index and serum high-density lipoprotein cholesterol concentration among US adults. Archives of Internal Medicine 161, 572–576.CrossRefGoogle ScholarPubMed Foster-Powell, K, Holt, SH & Brand-Miller, JC (2002) International table of glycaemic index and glycaemic load: 2002. American Journal of Clinical Nutrition 76, 5–56.CrossRefGoogle ScholarPubMed Friedman, G (1991) Diet and the irritable bowel syndrome. Gastroenterology Clinics of North America 20, 313–324.Google ScholarPubMed Frost, G, Leeds, A, Trew, G, Margara, R & Dormhorst, A (1998) Insulin sensitivity in women at risk of coronary heart disease and the effect of a low-glycaemic diet. Metabolism 47, 1245–1251.CrossRefGoogle Scholar Frost, G, Leeds, AA, Doré, CJ, Maderios, S, Brading, S, & Dornhorst, A (1999) Glycaemic index as a determinant of serum HDL cholesterol concentration. Lancet 353, 1045–1048.CrossRefGoogle ScholarPubMed Frost, G, Wilding, J & Beecham, J (1994) Dietary advice based on the glycaemic index improves dietary profile and metabolic control in type 2 diabetic patients. Diabetes Medicine 11, 397–401.CrossRefGoogle ScholarPubMed Gee, JM, Cooke, D, Gorick, S, Wortley, GM, Greenwood, RH, Zumbé, A & Johnson, IT (1991) Effects of conventional sucrose-based, fructose-based and isomalt-based chocolates on postprandial metabolism in non-insulin-dependant diabetics. European Journal of Clinical Nutrition 45, 561–566.Google Scholar Gehring, F, Mäkinen, KK, Larmas, M & Scheinin, A (1975) Turku sugar studies. X. Occurrence of polysaccharide forming streptococci and ability of mixed plaque microbiota to ferment various carbohydrates. Acta Odontologica Scandinavica 70, Suppl, 223–237.Google Scholar Giacco, R, Parillo, M, Rivellse, AA, Lasorella, G, Giacco, A, D'Episcopo, L & Richardi, G (2000) Long-term dietary treatment with increased amounts of fibre rich low glycaemic natural foods improves blood glucose control and reduces the number of hypoglycaemic events in type 1 diabetic patients. Diabetes Care 23, 1461–1466.CrossRefGoogle Scholar Gibson, GR & Roberfroid, MB (1995) Dietary modulation of the human colonic microbiota. Introducing the concept of prebiotic. Journal of Nutrition 125, 1401–1412.Google Scholar Gilbertson, HR, Brand-Miller, JC, Thorburn, AW, Evans, S, Chondros, P & Werther, GA (2001) The effect of flexible low glycemic index dietary advice versus measured carbohydrate exchange diets on glycemic control in children with type 1 diabetes. Diabetes Care 24, 1137–1143.CrossRefGoogle ScholarPubMed Glinsmann, WH, Irausquin, H & Park, YK (1986) Evaluation of health aspects of sugars contained in carbohydrate sweeteners. Report of Sugars Task Force, 1986. Journal of Nutrition 116, suppl. 11, s1–s216CrossRefGoogle ScholarPubMed Geoffrey Livesey (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties - Nutrition Research Reviews >Volume 16 Issue 2 Gracey, M (1982) Intestinal microflora and bacterial growth in early life. Journal of Pediatric Gastroenterology and Nutrition 1, 13–22.CrossRefGoogle ScholarPubMed Gray, DS (1995) The clinical uses of dietary fiber. American Family Physician 51, 419–426.Google ScholarPubMed Grenby, TH, Phillips, A & Mistry, M (1989) Studies of the dental properties of lactitol compared with five other bulk sweeteners in vitro. Caries Research 23, 315–319.CrossRefGoogle ScholarPubMed Grimble, GK, Patil, DH & Silk, DBA (1988) Assimilation of lactitol, an unabsorbed disaccharide, in the normal human colon. Gut 29, 1666–1671.CrossRefGoogle ScholarPubMed Guimaraes, EV, Goulart, EM & Penna, FJ (2001) Dietary fiber intake, stool frequency and colonic transit time in chronic functional constipation in children. Brazilian Journal of Medical Biology and Research 34, 1147–1153.CrossRefGoogle ScholarPubMed Haines, ST (1995) Treating constipation in the patient with diabetes. Diabetes Education 21, 223–232.CrossRefGoogle ScholarPubMed Hassinger, W, Sauer, G, Cordes, U, Krause, U, Beyer, J & Baessler, KH (1981) The effect of equicaloric amounts of xylitol, sucrose and starch on insulin requirements and blood glucose levels in insulin-dependent diabetes. Diabetologia 21, 37–40.CrossRefGoogle Scholar Havenaar, R, Huis in't Veld, JHJ, Baker-Dirks, O & Stoppelaar, JD (1978) Health and sugar substitutes. In Proceedings of the ERGOB Conference on Sugar Substitutes, Geneva, 192–218 [Guggenheim, B editor]. Basel Switzerland: KargerGoogle Scholar Hawksworth, G, Drasar, BS & Hill, MJ (1971) Intestinal bacteria and the hydrolysis of glycosidic bonds. Journal of Medical Microbiology 41 451–459.CrossRefGoogle Scholar Hayes, C (2001) The effect of non-cariogenic sweeteners on the prevention of dental caries: a review of the evidence. Journal of Dental Education 65 1106–1109.Google Scholar Henderson, L, Gregory, J, Irving, K & Swan, G (2003) The National Diet and Nutrition Survey: Adults Aged 19–64 Years. London: TSOGoogle Scholar Herman, RH (1974) Hydrolysis and absorption of carbohydrates, and adaptive responses of the jejunum. In Sugars in Nutrition pp. 145–172 [Sipple, HL and KW, McNutt editors]. New York: Academic Press IncGoogle Scholar Hill, MJ (1985) Bacteria and colorectal adenomas. Topics in Gastroenterolology 13 237–252.Google Scholar Hill, MJ, Melville, D, Lennard-Jones, JNeale, K & Richie, JK (1987) Faecal bile acids, dysplasia and carcinoma in ulcerative colitis. Lancet ii 185–186.CrossRefGoogle Scholar Holt, SHA, Miller, JCB & Petocz, P (1997) An insulin index of foods: the insulin demand generated by 1000-kJ portions of common foods. American Journal of Clinical Nutrition 66 1264–1276.CrossRefGoogle ScholarPubMed Howlett, J (2001) Low-digestible carbohydrates – the regulatory framework. British Journal of Nutrition 85 suppl. 1, S55–S58CrossRefGoogle ScholarPubMed Hyams, JS (1983) Sorbitol intolerance: an unappreciated cause of functional gastrointestinal complaints. Gastroenterology 84 30–33.Google ScholarPubMed Huttunen, KJMäkinen, KKScheinin, A (1975) Effects of sucrose, fructose and xylitol diets on glucose, lipid and urate metabolism. Acta Odontologica Scandinavica 70 239–245.Google Scholar Imfeld, T (1983) Identification of Low Caries Risk Dietary Components. Basel Switzerland: Karger VerlagGoogle ScholarPubMed Imfeld, T (1993) Efficacy of sweeteners and sugar substitutes in caries prevention. Caries Research 27 suppl. 1, 50–55.CrossRefGoogle ScholarPubMed International Diabetes Institute Australia (2002) Diabetes prevention programs: eat well live well. www.diabetes.com.au/living_with/healthpromotion.htmGoogle Scholar Ishikawa, M, Miyashita, M, Kawashima, Y, Nakamura, T, Saitou, N & Modderman, J (1996) Effects of oral administration of erythritol on patients with diabetes. Regulatory Toxicology and Pharmacology 24, s303–s308CrossRefGoogle ScholarPubMed Isokangas, P, Söderling, E, Pienihäkkinen, K & Alanen, P (2000) Occurrence of dental decay in children after maternal consumption of xylitol chewing gum, a follow-up from 0 to 5 years of age. Journal of Dental Research 79, 1885–1889.CrossRefGoogle Scholar Isokangas, P, Tenovuo, J, Söderling, E, Männistö|H & Mäkinen, KK (1991) Dental caries and mutans streptococci in the proximal area of molars affected by the habitual use of xylitol chewing gum. Caries Research 25, 444–448.CrossRefGoogle ScholarPubMed Järvi, AE, Karlström, BE, Granfeldt, YE, Björck, IE, Asp, N-GVessby, BOH (1999) Improved glycemic control and lipid profile and normalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care 22, 10–18.CrossRefGoogle Scholar Jenkins, DJ, Jenkins, AL, Wolever, TMSCollier, GRRao, AVThompson, LU (1987) Starchy foods and fiber: reduced rate of digestion and improved carbohydrate metabolism. Scandinavian Journal of Gastroenterology 22, 132–141.CrossRefGoogle Scholar Jenkins, DJ, Wolever, TM, Buckley, G, Lam, KY, Giudici, S, Kalmusky, J, Jenkins, AL, Patten, RL, Bird, J, Wong, GS & Josse, RG (1988) Low-glycemic-index starchy foods in the diabetic diet. American Journal Clinical Nutrition 48, 248–254.CrossRefGoogle ScholarPubMed Jenkins, DJA, Kendall, CWC, Augustin, LSA, Franceschi, S, Marchie, A & Jenkins, AL & Axelsen, M (2002) Glycemic index: overview of implications in health and disease. American Journal of Clinical Nutrition 76, 266S–273SCrossRefGoogle ScholarPubMed Jenkins, DJA, Wolever, TM, Taylor, RH, Barker, H, Fielden, H, Baldwin, JM, Bowling, AC, Newman, HC, Jenkins, AL & Goff, DV (1981) Glycemic index of foods: a physiological basis for carbohydrate exchange. American Journal of Clinical Nutrition 34, 362–366.CrossRefGoogle ScholarPubMed Kamoi, M (1974) Study on metabolism of maltitol. Part 2. Clinical experiments. Journal of the Japanese Diabetes Society 18, 451–460.Google Scholar Kandelman, D (1997) Sugar, alternative sweeteners and meal frequency in relation to caries prevention: new perspectives. British Journal of Nutrition 77, suppl. 1, S121–S128CrossRefGoogle ScholarPubMed Kaneko, T, Kohmoto, T, Kikuchi, H, Shiota, M, Iino, H & Mitsukoka, T (1994) Effects of isomalto-oligosaccharides with different degrees of polymerisation on human fecal bifidobacteria. Bioscience Biotechnology and Biochemistry 58, 2288–2290.CrossRefGoogle Scholar Kaspar, L & Spengler, M (1984) Wirkung oraler Gaben von Palatinit auf den Insulinverbrauch bei Typ-I-Diabetikern (Effect of oral doses of Palatinit on insulin requirements in type I diabetics). Aktulle Ernährungsmedizin 9, 60–64.Google Scholar Kapur, A & Kapur, K (2001) Relevance of glycemic index in the management of post-prandial glycaemia. Journal of the Association of the Physicians of India 49, 42–45.Google Scholar Kawanabe, J, Hirasawa, M, Takeuchi, T, Oda, T & Ikeda, T (1992) Noncariogenicity of erythritol as a substrate. Caries Research 26, 358–362.CrossRefGoogle ScholarPubMed Kearsley, MW, Birch, GG & Lian-Loh, RHP (1982) The metabolic fate of hydrogenated glucose syrups. Starch 8, 279–283.CrossRefGoogle Scholar Keller, U & Froesch, ER (1972) Vergleichende Untersuchungen über den Stoffwechsel von Xylit, Sorbit und Fruktose beim Menschen (Comparative investigations on the metabolism of xylitol, sorbitol and fructose in humans). Schweizerische Medizinische Wochenschrift 102, 1017–1022.Google Scholar Keup, U & Püttner, J (1974) Serumglucose- und -insulinverlauf bei gesunden Probanden nach einmaliger oraler Palatinit- bzw. Saccharosebelastung (Determination of blood sugar and plasma insulin in healthy patients having orally absorbed an oral dose of palatinit or saccharose). Bayer AG, Pharma-Bericht no. 4781 vom 01·07.Google Scholar Khaw, KT, Wareham, N, Luben, R, Bingham, S, Oakes, S, Welch, A & Day, N (2001) Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of European Prospective Investigation of Cancer and Nutrition (EPIC-Norfolk). British Medical Journal 322, 1–6.CrossRefGoogle Scholar Koch, T & Hudson, S (2000) Older people and laxative use: literature review and pilot study report. Journal of Clinical Nursing 9, 516–525.CrossRefGoogle ScholarPubMed König, KG (1990) Changes in the prevalence of dental caries: how much can be attributed to dietary change. Diet, Nutrition and Dental Caries 24, suppl. 1, 16–18.Google Scholar Leach, SA (1987) Sugar substitutes and remineralisation. Deutsche Zahnarztliche Zeitschrift 42, S135–S138Google Scholar Lederle, FA, Busch, DL, Mattox, KMWest, MJ & Aske, DM (1990) Cost-effective treatment of constipation in the elderly: a randomised double-blind comparison of sorbitol and lactulose. American Journal of Medicine 89, 597–601.CrossRefGoogle Scholar Lee, BM & Wolever, TMS (1998) Effect of glucose, sucrose and fructose on plasma glucose and insulin responses in normal humans: comparison with white bread. European Journal of Clinical Chemistry 52, 924–928.Google ScholarPubMed Levy, RD, Segal, I, Hassan, H & Saadia, R (1994) Stool weight and faecal pH in two South African populations with a dissimilar colon cancer risk. South African Journal of Surgery 32, 127–128.Google ScholarPubMed Life Sciences Research Office (1994) The Evaluation of the Energy of Certain Sugar Alcohols Used as Food Ingredients Bethesda, MD: Life Sciences Research Office Federation of American Societies for Experimental BiologyGoogle Scholar Life Sciences Research Office (1999) Evaluation of the Net Energy Value of Maltitol Bethesda, MD: Life Sciences Research Office Federation of American Societies for Experimental BiologyGoogle Scholar Liu, S, Manson, JE, Stampfer, MJ, Rexrode, KM, Hu, FB, Rimm, EB & Willett, WC (2000a) Whole grain consumption and risk of ischemic stroke in women: a prospective study. Journal of the American Medical Association 284, 1534–1540.CrossRefGoogle ScholarPubMed Liu, S, Willett, WC, Stumper, MY, Hun, FIB, Franz, M, Sampson, L, Heinekens, CH & Manson, JED (2000b) A prospective study of dietary glycaemic load, carbohydrate intake, and risk of coronary heart disease in US women. American Journal of Clinical Nutrition 71, 1455–1461.CrossRefGoogle ScholarPubMed Livesey, G (1990a) The impact of the concentration and dose of PalatinitR in foods and diets on energy value. Food Sciences and Nutrition 42, 223–243.CrossRefGoogle Scholar Livesey, G (1990b) On the energy value of sugar alcohols with the example of isomalt. In International Symposium on Caloric Evaluation of Carbohydrates 141–164. Kyoto Japan: The Japan Association of Dietetic and Enriched FoodsGoogle Scholar Livesey, G (1992) Energy values of dietary fibre and sugar alcohols for man. Nutrition Research Reviews 5, 61–84.CrossRefGoogle ScholarPubMed Livesey, G (1993) Comments on the methods used to determine the energy values of carbohydrates: dietary fibre, sugar alcohols and other bulking agents. International Journal of Food Sciences and Nutrition 44, 221–241.CrossRefGoogle Scholar Livesey, G (2000a) Studies on Isomalt – Published and Unpublished. Wymondham UK: Independent Nutrition LogicGoogle Scholar Livesey, G (2000b) The absorption of stearic acid from triacylglycerols: an inquiry and analysis. Nutrition Research Reviews 13, 185–214.CrossRefGoogle ScholarPubMed Livesey, G (2001) Tolerance of low-digestible carbohydrates – a general view. British Journal of Nutrition 85, suppl. 1, S7–S16CrossRefGoogle ScholarPubMed Livesey, G (2002a) Thermogenesis associated with fermentable carbohydrate in humans, validity of indirect calorimetry, and implications of dietary thermogenesis for energy requirements, food energy and body weight. International Journal of Obesity 26, 1553–1569.CrossRefGoogle ScholarPubMed Livesey, G (2002b) Approaches to health via lowering postprandial glycaemia. British Journal of Nutrition 88, 741–744.CrossRefGoogle ScholarPubMed Livesey, G, Buss, D, Coussement, P, Edwards, DGHowlett, J, Jones, DAKleiner, JEMüller, D & Sentko, A (2000) Suitability of traditional energy values for novel foods and food ingredients. Food Control 11, 250–289.CrossRefGoogle Scholar Livesey, G, Johnson, IT, Gee, JM, Smith, T, Lee, WA, Hillan, KA, Meyer, J & Turner, SC (1993) ‘Determination’ of sugar alcohol and Polydextrose R absorption in humans by the breath hydrogen (H 2 O) technique: the stoichiometry of hydrogen production and the interaction between carbohydrates assessed in vivo and in vitro. European Journal of Clinical Nutrition 47, 419–430.Google Scholar Livesey, G, Wilson, PDG, Roe, MA, Faulks, RM, Oram, LM, Brown, JC, Eagles, J, Greenwood, RH & Kennedy, H (1998) Splanchnic retention of intraduodenal and intrajejunal glucose in healthy adults. American Journal of Physiology 38 E709 – E716Google Scholar MacDonald, I, Keyser, A, & Pacy, D (1978) Some effects, in man, of varying the load of glucose, sucrose, fructose or sorbitol on various metabolites in blood. American Journal of Clinical Nutrition 31, 1305–1311.CrossRefGoogle ScholarPubMed MacGillivary, PC, Finley, HVL & Binns, TB (1959) Use of lactulose to create a preponderance of lactobacilli in the intestine of bottle fed infants. Scottish Medical Journal 4, 182–189.CrossRefGoogle Scholar McNaught, AD (1996) Nomenclature of carbohydrates (JCBN). Pure and Applied Chemistry 68 1919–2008. http://www.chem.qmul. ac.uk/iupac/2carb/CrossRefGoogle Scholar Macpherson, G (1990) Black's Medical Dictionary. London: Black A & C.Google Scholar McRorie, J, Zorich, N, Riccardi, K, Filloon, T, Wason, S & Giannalla, R (2000) Effect of olestra and sorbitol consumption on objective measures of diarrhea: impact of stool viscosity on common gastrointestinal symptoms. Regulatory Toxicology and Pharmacology 31, 59–67.CrossRefGoogle ScholarPubMed Mäkinen, KK, Isotupa, KP, Kivilompolo, T, Mäkinen, PL, Toivanen, J & Soderling, E (2001) Comparison of erythritol and xylitol saliva stimulants in the control of dental plaque and mutans streptococci. Caries Research 35, 129–135.CrossRefGoogle ScholarPubMed Mäkinen, KK, Mäkinen, PL, Pape, HR, Allen, P, Bennett, CA, Isokangas, PJ & Isotupa, KP (1995) Stabilisation of rampant caries: polyol gum and arrest of dentine caries in two long-term cohort studies in young subjects. International Dental Journal 45, 93–107.Google ScholarPubMed Mäkinen, KK, Makinën, PL, Pape, HR Jr, Peldyak, J, Hujoel, P, Isotupa, KP, Soderling, E, Isokangas, PJ, Allen, P & Bennett, C (1996) Conclusion and review of the Michigan Xylitol Programme (1986–1995) for the prevention of dental caries. International Dental Journal 46, 22–34.Google ScholarPubMed Marteau, P & Flourié, B (2001) Tolerance to low-digestible carbohydrates: symptomatology and methods. British Journal of Nutrition 84, suppl. 1, S17–S21.CrossRefGoogle Scholar Matthews, DR, Hosker, JP, Rudenski, AS, Naylor, BA, Treacher, DF & Turner, RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419.CrossRefGoogle ScholarPubMed Mehnert, H (1971) The relative value of sugar substitutes and artificial sweeteners in the diet of diabetics. Deutsche Gesselschaft für Ernärung 20. Darmstadt: Steinkopff.Google Scholar Mehnert, H, Struhlfauth, K, Mehnert, B, Weiner, L & Hoelflmayr, X (1960) Uber die Moglichkeiten der Verabreichung hoher peroraler Gaben von Fructose, Sorbit oder Fructose/Sorbit-gesmish an Diabetiker (On the possibility of the administration by mouth of fructose, sorbitol or fructose/sorbitol gesmish in diabetics). Müchener Medizin Wochenschrift 102, 1–11.l.Google Scholar Meyer, KA, Kushi, LH, Jacobs, DR Jr, Slavin, J, Sellers, TA & Folsom, AR (2000) Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. American Journal of Clinical Nutrition 71, 921–930.CrossRefGoogle ScholarPubMed Mimura, G, Koga, T, Oshikawa, K, Kido, S, Sadanaga, T, Jinnouchi, T, Kawagchi, K & Mori, N (1972) Maltitol tests with diabetics. Journal of Japanese Nutrition 30, 145–152.CrossRefGoogle Scholar Mital, BK & Garg, SK (1995) Anticarcinogenic, hypocholesterolaemic, and antagonistic activities of Lactobacillus acidophilus. Crotatian Review of Microbiology 21, 175–214.CrossRefGoogle Scholar Mitsouka, T (1992) Intestinal flora and aging. Nutrition Reviews 50, 438–446.CrossRefGoogle Scholar Morgan, LM, Tredger, JA, Hampton, SM, French, AP, Peake, JCF & Marks, V (1988) The effect of dietary modification and glycaemia on gastric emptying and gastric inhibitory polypeptide (GIP) secretion. British Journal of Nutrition 60, 29–37.CrossRefGoogle Scholar Mortensen, PB, Holtug, K, & Rasmmusen, HS (1988) Short-chain fatty acid production from mono- and disaccharides in a fecal incubation system: implications for colonic fermentation of dietary fiber in humans. Journal of Nutrition 118, 321–325.CrossRefGoogle Scholar Mühlemann, HR (1971) Intra-oral radio telemetry. International Dental Journal 21, 456–465.Google Scholar Müller-Hess, R, Geser, CA, Bonjour, J-P, Jequier, E& Felber, J-P (1975) Effects of oral xylitol administration on carbohydrate and lipid metabolism in normal subjects. Infusiontherapie 2, 247–252.Google ScholarPubMed Nasrallah, SM&Iber, FL (1969) Mannitol absorption and metabolism in man. American Journal of Medical Sciences 258, 80–88.CrossRefGoogle ScholarPubMed Natah, SS, Hussein, KR, Touominen, JA&Koivisto, VA (1997) Metabolic response to lactitol and xylitol in healthy men. American Journal of Clinical Nutrition 65, 947–950.CrossRefGoogle ScholarPubMed National Research Council (1989) Diet and Health: Implications for Reducing Chronic Disease Risk. Washington, DC: Committee on Diet and Health Food and Nutrition Board. Commission on Life Sciences. National Research Council. National Academy PressGoogle Scholar Newbrun, E (1982) Sucrose in the dynamics of the carious process. International Dental Journal 32, 13–23.Google ScholarPubMed Nguyen, NU, Dumoulin, G, Henriet, M-T, Berthelay, S&Regnard, J (1993) Carbohydrate metabolism and urinary excretion of calcium and oxalate after ingestion of polyol sweeteners. Journal of Clinical Endocrinology and Metabolism 77, 388–392.Google ScholarPubMed Nilsson, U &Jägerstad, M (1987) Hydrolysis of lactitol, maltitol and Palatinint by human intestinal biopsies. British Journal of Nutrition 58, 199–206.CrossRefGoogle ScholarPubMed Noda, K, Nakayama, K & Oku, T (1994) Serum and insulin levels and erythritol balance after oral administration of erythritol in healthy subjects. European Journal of Clinical Nutrition 48, 286–292.Google ScholarPubMed Nurko, S, Baker, SS, Colletti, RB, Lorenzo, CD, Ector, W & Liptak, GS (2001) Contemporary pediatrics® archive. www.contpeds. com/past issues/Dec 2001/CMEGoogle Scholar Oku, T &Noda, K (1990) Erythritol balance study and estimation of metabolisable energy of erythritol. In Caloric Evaluation of Carbohydrates 65–75 [Hosoya, N editor]. Tokyo: Research Foundation for Sugar MetabolismGoogle Scholar Orchard, TJ, Dorman, JS, Maser, RE, Becker, DJ, Ellis, D, LaPorte, RE, Kuller, LH, Wolson, SK &Drash, AL, (1990) Factors associated with avoidance of severe complications after 25 yrs of IDDM: Pittsburgh Epidemiology of Diabetes Complications Study 1. Diabetes Care 13, 741–747.CrossRefGoogle Scholar Ornskov, F, Nielsen, CB, Nielsen, ML & Christophersen, SJ (1988) Peroral mannitol in whole-gut irrigation for chronic constipation in children. Ugeskr Laeger 150, 847–849.Google ScholarPubMed Paige, DM, Bayless, TM, Davies, LR (1992) Palatinit® (isomalt) digestibility in children. Nutrition Research 12, 27–37.CrossRefGoogle Scholar Pelletier, X, Hanesse, B, Bornet, F, Derby, G (1994) Glycaemic and insulinaemic responses in healthy volunteers upon ingestion of maltitol and hydrogenated glucose syrups. Diabetes and Metabolism 20, 291–296.Google ScholarPubMed Petzoldt, R, Lauer, P, Spengler, M, Schöffling, K (1982a) Palatinit bei typ-II Diabetiken: Wirkung auf blutglucose, seurminsulin, C-peptide und freie Fettsauren im verlagleich mit glucose (Palatinit® in type II diabetics: effect on blood glucose, serum insulin, C peptide and free fatty acids in comparison with glucose). Deutsche Medizinesche Wochenschrift 107, 1910–1913.CrossRefGoogle Scholar Petzoldt, R, Müller-Siebert, A, Schöffling, K, Spengler, M (1982b) Zur Wirkung von Saccharose, Fruktose und Sorbit auf den Kohlenhydrate-, fett- und Purinstoffwechsel bei Typ II-diabetikern (On the effect of saccharose, fructose and sorbitol on carbohydrate-, fat-, and purine metabolism in type II diabetics). Aktulle Ernährungsmedizin 7, 151–156.Google Scholar Piche, T, Zerbib, F, Varannes, SB, Cherbut, C, Anini, Y, Roze, C, leQuellec, A, Galmiche, JP (2000) Modulation by colonic fermentation of LES function in humans. American Journal of Physiology 278, G578 – G584Google ScholarPubMed Pitzalis, G, Deganello, F, Mariani, P, Chiarini-Testa, MB, Virgilii, F, Gasparri, R, Calvani, L, Bonamico, M (1996) Lactitol in chronic idiopathic constipation in children. La Pediatria Medica e Chirurgica 17, 223–226.Google Scholar Pometta, D, Trabichet, C, Spengler, M (1985) Effects of a 12-week administration of isomalt on metabolic control in type-II-diabetics. Aktulle Ernährungsmedizin 10, 174–177.Google Scholar Pontes, FA, Silva, AT&Cruz, AC (1995) Colonic transit times and the effect of lactulose or lactitol in hospitalized patients. European Journal of Gastroenterology and Hepatology 7, 441–446.Google ScholarPubMed Ponz, de, Leon, M, Roncucci, L (1997) Chemoprevention of colorectal tumors: role of lactulose and of other agents. Scandinavian Journal of Gastroenterology 222, Suppl., 72–75.Google Scholar Ravelli, GP, White, A, Spencer, R, Hotton, P, Harbron, C, Keen, R (1995) The effect of lactitol intake upon stool parameters and the faecal bacterial flora in chronically constipated women. Acta Therapeutica 21, 243–255.Google Scholar Rizkalla, SW, Luo, J, Wils, D, Bruzzo, F, Slama, G (2002) Glycaemic and insulinaemic responses to a new hydrogenated starch hydrolysate in healthy and type 2 diabetic subjects. Diabetes and Metabolism 28, 385–390.Google ScholarPubMed Roediger, WEW (1990) The starved colon – diminished mucosal nutrition, diminished absorption, and colitis. Diseases of the Colon and Rectum 33, 858–862.CrossRefGoogle ScholarPubMed Rolla, G, Scheie, AA, Ciardi, JE (1985) Role of sucrose in plaque formation. Scandinavian Journal of Dental Research 93, 105–111.Google ScholarPubMed Roncucci, L, Di Donato, P, Carati, L, Carati, L, Ferrari, A, Perini, M, Bertoni, G, Bedogni, G, Paris, B, Svanoni, F, Girola, M & Ponz de Leon, M (1993) Antioxidant vitamins or lactulose for the prevention of the recurrence of colorectal adenomas. Colorectal Cancer Study Group of the University of Modena and the Health Care District 16. Diseases of the Colon and Rectum 6, 227–234.CrossRefGoogle Scholar Rowland, IR (1991) Nutrition and gut microflora metabolism. In Nutrition, Toxicity and Cancer [Rowland, IR editor]. 113–136. Boston, MA: CRC PressGoogle Scholar Royal College of General Practitioners (1986) Morbidity Statistics from General Practice – Third National Study, 1981–1982 Series MB5 (1). London: H.M. Stationery OfficeGoogle Scholar Rugg-Gunn, AJ (1989) Lycasin and the prevention of dental caries. In Progress in Sweeteners [Grenby, T editor]. 311–329. Amsterdam: ElsevierGoogle Scholar Sacchetta, A, Bottini, C, Guarisco, RCandiani, C, Brambilla, M (2000) Acceptability, efficacy and tolerability of lactitol syrup in chronic or hospitalisation-related constipation. European Bulletin of Drug Research 8, 1–6.Google Scholar Salford Symposium Consensus (2001) Consensus statements from participants of the International Symposium on Low Digestible Carbohydrates. British Journal of Nutrition 85, suppl. 1 S5Google Scholar Salmerón, J, Ascherio, A, Rimm, EB, Colditz, GA, Spiegelman, D, Jenkins, DJ, Stampfer, MJ, Wing, AL, Willet, WC (1997a) Dietary fibre, glycaemic load, and risk of NIDDM in men. Diabetes Care 20, 545–550.CrossRefGoogle ScholarPubMed Salmerón, J, Manson, JE, Stampfer, MJ, Colditz, GA, Wing, AL, Willet, WC (1997b) Dietary fibre, glycaemic load, and risk of non-insulin-dependent diabetes in women. Journal of the American Medical Association 277, 472–477.CrossRefGoogle Scholar Salminen, S, Salminen, E, Marks, V (1982) The effects of xylitol on the secretion of insulin and gastric inhibitory polypeptide in man and rats. Diabetologia 22, 480–482.CrossRefGoogle ScholarPubMed Samata, A, Burden, AC, Jones, GR (1985) Plasma glucose responses to glucose, sucrose, and honey in patients with diabetes mellitus: an analysis of glycaemic and peak incremental indices. Diabetic Medicine 2, 371–373.CrossRefGoogle Scholar Samelson, SL, Nelson, RL, Nyhus, LM (1985) Protective role of faecal pH in experimental colon carcinogenesis. Journal of the Royal Society of Medicine 78, 230–233.CrossRefGoogle ScholarPubMed Sandler, RS, Jordan, MC, Shelton, BJ (1990) Demographic and dietary determinants of constipation. American Journal of Public Health 80, 185–189.CrossRefGoogle ScholarPubMed Scheie, AA, Fejerskov, O, Danielsen, B (1998) The effect of xylitol-containing chewing gums on dental plaque and acidogenic potential. Journal of Dental Research 77, 1547–1522.CrossRefGoogle ScholarPubMed Scheppach, W, Bartram, P, Richer, F (1995) Management of diversion colitis, pouchitis and distal ulcerative colitis. In Physiological and Clinical Aspects of Short-chain Fatty Acids [Cummings, JH, Rombeau, JL and Sakata, T editors]. 353–360. Cambridge, UK: University PressGoogle Scholar Scheppach, W, Luehrs, H, Menzel, T (2001) Beneficial health effects of low digestible carbohydrate consumption. British Journal of Nutrition 85, suppl. 1, S23 – S30CrossRefGoogle ScholarPubMed Screvola, D, Bottari, G, Oberto, L, Monzillo, V, Perversi, L, Marone, P (1993a) Intestinal bacterial toxins and alcohol liver damage: effect of lactitol, a synthetic disaccharide. La Clinica Dietologica 20, 297–314.Google Scholar Screvola, D (1993b) The role of lactitol in the regulation of intestinal microflora in liver disease. Giornale di Malattie Infettive e Parassitarie 45, 906–918.Google Scholar Secchi, A, Pontiroli, AE, Cammille, L, Bizzi, A, Cini, M, Pozza, G (1986) Effects of oral administration of maltitol on plasma glucose, plasma sorbitol, and serum insulin levels in man. Klinische Wochenschrift 64, 265–269.CrossRefGoogle ScholarPubMed Segal, I (1998) Rarity of colorectal adenomas in the African black population. European Journal of Cancer Prevention 7, 387–391.CrossRefGoogle ScholarPubMed Segal, I (2002) Physiological small bowel malabsorption of carbohydrates protects against bowel diseases in Africans. Journal of Gastroenterology and Hepatology 17, 249–252.CrossRefGoogle ScholarPubMed Segal, I, Hassan, H, Walker, AR, Becker, P, Braganza, J (1995) Fecal short chain fatty acids in South African urban Africans and whites. Diseases of the Colon and Rectum 38, 732–734.CrossRefGoogle ScholarPubMed Sels, JP, Verdonk, HE, Wolffenbuttel, BH (1998) Effects of acarbose (Glucobay) in persons with type 1 diabetes: a multicentre study. Diabetes Research and Clinical Practice 41, 139–145.CrossRefGoogle ScholarPubMed Sheinin, A, Makinën, KK, Ylitako, K (1974) An intermediate report on the effects of sucrose, fructose and xylitol diets on the caries incidence in man. Acta Odontologica Scandinavia 32, 383–412.CrossRefGoogle Scholar Shively, CA, Apgar, JL, Tarka, SM (1986) Postprandial glucose and insulin responses to various snacks of equivalent carbohydrate content in normal subjects. American Journal of Clinical Nutrition 43, 335–342.CrossRefGoogle ScholarPubMed Signorelli, P, Croce, P, Dede, A (1996) A clinical study of the use of a combination of glucomannan with lactulose in the constipation of pregnancy. Minerva Ginecologica 48, 577–582.Google ScholarPubMed Sinaud, S, Montaurier, C, Wils, D, Vernet, J, Brandolini, M, Boutloup-Demange, C, Vermorel, M (2002) Net energy value of two low digestible carbohydrates, Lycasin HBC and the hydrogenated polysaccharide constituent of Lycasin HBC in healthy human subjects and their impact on nutrient digestive utilisation. British Journal of Nutrition 87, 131–139.CrossRefGoogle Scholar Slama, G (1989) Study of the effects on glycaemia and insulinaemia in normal subject and non-insulin dependent diabetics of three hydrogenated derivatives: Palatinit®, Maltisorb® and Lycasin®. Hotel-Dieu, Paris: Laboratory Services for Diabetology.Google Scholar Spengler, M, Somogyi, JC, Pletcher, E, Boehme, K (1987) Tolerability, acceptance and energetic conversion of isomalt (Palatinit) in comparison with sucrose. Aktulle Ernährungsmedizin 12, 210–214.Google Scholar Staiano, A, Simeone, D, Del Giudice, E, Miele, E, Tozzi, A, Toraldo, C (2000) Effect of the dietary fiber glucomannan on chronic constipation in neurologically impaired children. Journal of Pediatrics 136, 41–45.CrossRefGoogle ScholarPubMed Steinke, J, Wood, FC, Domage, L, Marble, A, Renold, AE (1961) Evaluation of sorbitol in the diet camp of diabetic children at camp. Diabetes 10, 218–227.CrossRefGoogle Scholar Stevens, J, Levitsky, DA, VanSoest, PJ, Robertson, JB, Kalkwarf, HJ, Roe, DA (1987) Effects of psyllium and wheatbran on spontaneous energy intake. American Journal of Clinical Nutrition 46, 812–817.CrossRefGoogle Scholar Stewart, D (2001) Consumption and consumer perceptions: report of a workshop. British Journal of Nutrition 85, suppl. 1, S61 – S62CrossRefGoogle Scholar Stratton, IM, Adler, AI, Neil, AW, Matthews, DR, Manley, SE, Cull, CA, Hadden, D, Turner, RC & Holman, RR, on behalf of the UK Prospective Diabetes Study Group (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. British Medical Journal 321, 405–412.CrossRefGoogle ScholarPubMed Sweeney, M (1997) Constipation. Diagnosis and treatment. Home Care Provider 2, 250–255.CrossRefGoogle ScholarPubMed Sydney, University's Glycaemic Index Research Service (2002) Glycaemic Index Report – Isomalt, Sydney, Australia: Sydney University's Glycaemic Index Research Service (SUGiRS) University of Sydney.Google Scholar Takatsuka, T (2000) Influence of Palatinit® and xylitol on demineralisation/remineralisation on bovine enamel. Cariology Today 1, 37–40.Google Scholar Tarao, K, Tamai, S, Ito, Y, Okawa, S, Hayashi, M (1995) On changes in faecal bacteria flora by administration of lactitol in liver cirrhosis patients with hepatic encephalophathy. Journal of the Japanese Society of Gastroenterology 92, 1037–1050.Google Scholar Teramoto, F, Rokutan, K, Kawakami, Y, Fujimura, Y, Uchida, J, Oku, K, Oku, M, Yoneyama, M (1996) Effect of 4 G -ß-D-galactosyl sucrose (lactosucrose) on fecal microflora in patients with chronic inflammatory bowel disease. Journal of Gastroenterology 31, 33–39.CrossRefGoogle Scholar Thannhauser, SJ, Meyer, KH (1929) Sorbit (Sionin) als Kohlehydraterstz für den Diabeteskranken (Sorbitol (Sionin) as carbohydrate for diabetics). Müchener Medizinische Wochenschrift 76, 356–360.Google Scholar Thiébaud, D, Jacot, E, Schmitz, H, Spengler, M, Felber, JP (1984) Comparative study of isomalt and sucrose by means of continuous indirect calorimetry. Metabolism 33, 808–813.CrossRefGoogle ScholarPubMed Thornton, JR (1981) High colonic pH promotes colorectal cancer. Lancet i 1081–1082.CrossRefGoogle Scholar Tong, Z-H, Gu, W-Z, Gen, Z (1987) Effect on plasma glucose and insulin after xylitol loading in 30 normal adults. Zhonghau Neike Zazhi 26, 420–422.Google ScholarPubMed Toors, FA (1992) Chewing gum and dental health – literature review. Revue Belge de Medecine Dentaire 47, 67–92.Google ScholarPubMed Tse, PW, Leung, SS, Chan, T, Sien, A, Chan, AK (2000) Dietary fibre intake and constipation in children with severe developmental disabilities. Journal of Paediatric and Child Health 36, 236–239.CrossRefGoogle ScholarPubMed Tsuji, K, Osada, Y, Shimada, N, Nishimura, R, Kobayashi, S, Tomi Ichikawa, T, Hosoya, N (1990) Energy value of sorbitol and maltitol in healthy men and rats. In Caloric Evaluation of Carbohydrates [Hosoya, N editor]. 77–90. Tokyo: Research Foundation for Sugar MetabolismGoogle Scholar Tsunehiro, J, Matsukubo, T, Shiota, M, Takaesu, Y (1997) Effects of a hydrogenated isomaltooligosaccharide mixture on glucan synthesis and on caries development in rats. Bioscience Biochemistry and Biotechnology 61, 2015–2018.CrossRefGoogle ScholarPubMed Tucker, DM, Sandstead, HH, Logan, GM, Klevay, LM, Mahalko, J, Johnson, LK, Inman, L, Inglett, GE (1981) Dietary fibre and personality factors as determinants of stool output. Gastroenterology 81, 879–883.Google ScholarPubMed Tuohy, KM, Kolida, S, Lustenberger, AM, Gibson, GR (2001) The probiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides – a human volunteer study. British Journal of Nutrition 86, 341–348.CrossRefGoogle ScholarPubMed Unwin, N, Shaw, J, Zimmet, P, Alberti, KGMM (2002) Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabetes Medicine 19, 708–723.Google ScholarPubMed Vaaler, S, Bjørneklett, A, Jelling, I, Skrede, G, Hannsen, K, Fausa, O & Aggenæs, Ø (1987) Sorbitol as a sweetener in the diet of insulin-dependent diabetes. Acta Medica Scandinavica 221, 165–170.CrossRefGoogle ScholarPubMed Van, derHoeven, JS (1979) Influence of disaccharide alcohols on oral microflora. Caries Research 13, 301–306.Google Scholar Van, derHoeven, JS (1980) Cariogenicity of disaccharide alcohol in rats. Caries Research 14, 61–66.Google Scholar van Es, AJH, De Groot, L & Vogt, JE (1986) Energy balance of eight volunteers fed on diet supplemented with either lactitol or saccharose. British Journal of Nutrition 56, 545–554.CrossRefGoogle ScholarPubMed van Velthuijsen, JA (1990) Physiology and metabolic energy of lactitol. In Caloric Evaluation of Carbohydrates [Hosoya, N editor]. 124–139. Tokyo: Research Foundation for Sugar MetabolismGoogle Scholar Veitch, AM, Kelly, P, Segal, I, Spies, SK & Farthing, MJ (1998) Does sucrase deficiency in black South Africans protect against colonic disease. Lancet 351, 183.CrossRefGoogle ScholarPubMed Velazquez, OC, Lederer, HM & Rombeau, JL (1996) Butyrate and the colonocyte. Implications for neoplasia. Digestive Diseases Science 41, 727–739.CrossRefGoogle ScholarPubMed Verina, P, Frandina, C, Bilotta, T, Ricciardi, MR, Villotti, G & Fallucca, F (1995) Sorbitol malabsorption and non-specific abdominal symptoms in type II diabetics. Metabolism 44, 796–799.CrossRefGoogle Scholar Waaler, SM, Assev, S & Rolla, G (1992) Xylitol-5-P formation by dental plaque after 12 weeks' exposure to xylitol/sorbitol containing chewing gum. Scandinavian Journal of Dental Research 100, 319–321.Google Scholar Wallace, TM & Matthews, DR (2000) Poor glycaemic control in type 2 diabetes: a conspiracy of disease, suboptimal therapy and attitude. Quarterly Journal of Medicine 93, 369–374.CrossRefGoogle ScholarPubMed Wang, W, Lee, ET, Fabsitz, R, Welty, TK & Howard, BV (2002) Using HbA(1c) to improve efficacy of the American Diabetes Association fasting plasma glucose criterion in screening for new type 2 diabetes in American Indians: the strong heart study. Diabetes Care 25, 1365–1370.CrossRefGoogle ScholarPubMed Wang, Y-M & van Eys, J (1981) Nutritional significance of fructose and sugar alcohols. Annual Review of Nutrition 1, 437–475.CrossRefGoogle ScholarPubMed Warshaw, HS & Powers, MA (1999) A search for answers about foods with polyols (sugar alcohols). The Diabetes Educator 25, 307–310., 315, 321.CrossRefGoogle Scholar Wegener, M, Borsch, G, Schffstein, J, Luerweg, C & Leverkus, F (1990) Gastrointestinal disorders in patients with insulin-treated diabetes mellitus. Digestive Diseases 8, 23–26.CrossRefGoogle ScholarPubMed Wheeler, ML, Finberg, SE, Gibson, R & Fineberg, N (1990) Metabolic response to oral challenge of hydrogenated starch hydrolysate versus glucose in diabetes. Diabetes Care 13, 733–740.CrossRefGoogle ScholarPubMed Willibald-Ettle, I & Schiweck, H (1996) Properties and applications of isomalt and other bulk sweeteners. In Advances in Sweeteners [Grenby, TH editor]. 134–149. London: Blackie Academic & Professional.CrossRefGoogle Scholar Wolever, TM (2000) Dietary carbohydrates and insulin action in humans. British Journal of Nutrition 83, suppl. 1, S97–S102CrossRefGoogle ScholarPubMed Wolever, TM & Bolognesi, C (1996) Source and amount of carbohydrate affect postprandial glucose and insulin in normal subjects. Journal of Nutrition 126, 2798–2806.Google ScholarPubMed Wolever, TM & Jenkins, DJ (1986) The use of glycaemic index in predicting the blood glucose response to mixed meals. American Journal of Clinical Nutrition 43, 167–172.CrossRefGoogle ScholarPubMed Wolever, TM, Jenkins, DJ, Jenkins, AL & Josse, RG (1991) The glycaemic index: methodology and clinical implications. American Journal of Clinical Nutrition 54, 846–854.CrossRefGoogle ScholarPubMed Wolver, TM, Jenkins, DJ, Josse, RG, Wong, GS & Lee, R (1987) The glycaemic index: similarity of values derived in insulin-dependent and non-insulin-dependent diabetic patients. Journal of the American College of Nutrition 6, 295–302.CrossRefGoogle Scholar Wolever, TM, Jenkins, DJ, Vuksan, V, Jenkins, AL, Buckley, GC, Wong, GS & Josse, RG (1992 a) Beneficial effects of a low glycaemic index diet in type 2 diabetes. Diabetes Medicine 9, 451–458.CrossRefGoogle ScholarPubMed Wolever, TM, Jenkins, DJ, Vuksan, V, Jenkins, AL, Wong, GS & Josse, RG (1992 b) Beneficial effect of low-glycemic index diet in overweight NIDDM subjects. Diabetes Care 15, 562–564.CrossRefGoogle ScholarPubMed Yamagata, S, Goto, Y, Ohneda, A, Anzai, M, Kawashima, S, Chiba, M, Maruhama, Y & Yamauchi, Y (1965) Clinical effects of xylitol on carbohydrate and lipid metabolism in diabetes. Lancet ii 918–921.CrossRefGoogle Scholar Yamagata, S, Goto, Y, Ohneda, A, Anzai, M, Kawashima, S, Kikuch, J, Chiba, M, Marumama, Y, Yamauchi, Y & Toyota, T (1969) Clinical applications of xylitol in diabetics. In Pentoses and Pentitols [Horecjker, BLLang, K and Takagi, Y editors]. 316–325. Berlin: Springer-Verlag.Google Scholar Zaal, J & Ottenhof, A (1977) Influence of Lactitol on Blood Sugar Levels after Sucrose Intake TNO report R5443. Zeist, The Netherlands:TNO Centraal Instituut voor Voedingsonderzoek.Google Scholar Zhong, J, Luo, BY, Xiang, MJ, Liu, HW, Zhai, ZK, Wang, TS & Craig, SAS (2000) Studies on the effects of polydextrose intake on physiologic functions in Chinese people. American Journal of Clinical Nutrition 72, 1503–1509.Google Scholar Ziesenitz, SC & Siebert, G (1987) The metabolism and utilization of polyols and other bulk sweeteners compared with sugars. In Developments in Sweeteners vol. 3, pp. 109–149 [Grenby, TH editor]. London and Amsterdam: Elsevier Applied Science Publishing.Google Scholar Zumbé, ABrinkworth, RA (1992) Comparative studies of gastrointestinal tolerance and acceptability of milk chocolate containing either sucrose, isomalt or sorbitol in healthy consumers and type II diabetics. Zeitschrift Ernährungswissschaft 31, 40–48.CrossRefGoogle ScholarPubMed Zumbé, A, Lee, A & Storey, D (2001) Technological properties of low digestible carbohydrates. British Journal of Nutrition 85, suppl. 1, S31–S45 CrossRefGoogle Scholar